
Print
Tim Golden > Python Stuff > Win32 How Do I...? > Print

Introduction

The requirement: to print

This is probably the most wide-ranging question I'll have to address here, and the one with the
greatest disparity between the number and complexity of solutions and the simplicity of the
requirement. The answer is: it all depends what you're trying to print, what tools you have at
your disposal, and how much control you need.

 If you simply have a "document" (read: file of a well-known type, associated with one
application) you wish to print, and aren't too fussy about controlling, then you can use the
ShellExecute approach. This works (assuming you have the corresponding applications
installed) for Microsoft Office documents, PDF files, text files, and pretty much any major
application. Try it and see.

 The next most general case is where you have something, for example a text file or raw
PCL, which you know you can send directly to a printer. In that case, you can use the
win32print functions directly.

 If you have an image to print, you can combine the power of the Python Imaging Library
with the win32ui module to do a rough-and-ready but useful print to any printer.

 If you have a fair amount of text to print, your best bet is to use the Reportlab PDF Toolkit
and its Platypus document system to generate readable PDFs from any amount of text,
and then use the ShellExecute technique to print it.

Standard document: use ShellExecute

Make use of the fact that within Win32, file types (in effect, extensions) can be associated with
applications via command verbs. Typically the same application will handle all verbs (and
typically those verbs are Open and Print) but that's not strictly necessary. This means that you
can tell the OS to take your file and call whatever's necessary to print it.

 Takes care of standard file types
 No need to mess around with printer lists
 Gives you no control
 Only works for well-defined document-application pairings.
 Only prints to default printer

UPDATE: Kudos to Chris Curvey for pointing out that you can specify a printer by including it
with a d: switch in the params section. Don't know if it works for every file type.

import tempfile
import win32api
import win32print

filename = tempfile.mktemp (".txt")
open (filename, "w").write ("This is a test")
win32api.ShellExecute (
 0,
 "print",
 filename,

 #
 # If this is None, the default printer will
 # be used anyway.
 #
 '/d:"%s"' % win32print.GetDefaultPrinter (),
 ".",
 0
)

UPDATE 2: Mat Baker & Michael "micolous" both point out that there's an underdocumented
printto verb which takes the printer name as a parameter, enclosed in quotes if it contains
spaces. I haven't got this to work but they both report success for at least some file types.

import tempfile
import win32api
import win32print

filename = tempfile.mktemp (".txt")
open (filename, "w").write ("This is a test")
win32api.ShellExecute (
 0,
 "printto",
 filename,
 '"%s"' % win32print.GetDefaultPrinter (),
 ".",
 0
)

Raw printable data: use win32print directly

The win32print module offers (almost) all the printing primitives you'll need to take some data
and throw it at a printer which has already been defined on your system. The data must be in a
form which the printer will happily swallow, usually something like text or raw PCL.

 Quick and easy
 You can decide which printer to use
 Data must be printer-ready

import os, sys
import win32print
printer_name = win32print.GetDefaultPrinter ()

raw_data could equally be raw PCL/PS read from
some print-to-file operation

if sys.version_info >= (3,):
 raw_data = bytes ("This is a test", "utf-8")
else:
 raw_data = "This is a test"

hPrinter = win32print.OpenPrinter (printer_name)
try:
 hJob = win32print.StartDocPrinter (hPrinter, 1, ("test of raw data", None, "RAW"))
 try:
 win32print.StartPagePrinter (hPrinter)
 win32print.WritePrinter (hPrinter, raw_data)
 win32print.EndPagePrinter (hPrinter)
 finally:
 win32print.EndDocPrinter (hPrinter)
finally:

 win32print.ClosePrinter (hPrinter)

Single image: use PIL and win32ui

Without any extra tools, printing an image on a Windows machine is almost insanely difficult,
involving at least three device contexts all related to each other at different levels and a fair
amount of trial-and-error. Fortunately, there is such a thing as a device-independent bitmap
(DIB) which lets you cut the Gordian knot -- or at least some of it. Even more fortunately, the
Python Imaging Library supports the beast. The following code does a quick job of taking an
image file and a printer and printing the image as large as possible on the page without losing
the aspect ratio, which is what you want most of the time.

 It works
 You can decide which printer to use
 (Thanks to the PIL) You can select loads of image formats
 If you're not up on Windows device contexts, it's not the most intelligble of techniques.

import win32print
import win32ui
from PIL import Image, ImageWin

Constants for GetDeviceCaps

HORZRES / VERTRES = printable area

HORZRES = 8
VERTRES = 10

LOGPIXELS = dots per inch

LOGPIXELSX = 88
LOGPIXELSY = 90

PHYSICALWIDTH/HEIGHT = total area

PHYSICALWIDTH = 110
PHYSICALHEIGHT = 111

PHYSICALOFFSETX/Y = left / top margin

PHYSICALOFFSETX = 112
PHYSICALOFFSETY = 113

printer_name = win32print.GetDefaultPrinter ()
file_name = "test.jpg"

You can only write a Device-independent bitmap
directly to a Windows device context; therefore
we need (for ease) to use the Python Imaging
Library to manipulate the image.

Create a device context from a named printer
and assess the printable size of the paper.

hDC = win32ui.CreateDC ()
hDC.CreatePrinterDC (printer_name)
printable_area = hDC.GetDeviceCaps (HORZRES), hDC.GetDeviceCaps (VERTRES)
printer_size = hDC.GetDeviceCaps (PHYSICALWIDTH), hDC.GetDeviceCaps (PHYSICALHEIGHT)

printer_margins = hDC.GetDeviceCaps (PHYSICALOFFSETX), hDC.GetDeviceCaps
(PHYSICALOFFSETY)

Open the image, rotate it if it's wider than
it is high, and work out how much to multiply
each pixel by to get it as big as possible on
the page without distorting.

bmp = Image.open (file_name)
if bmp.size[0] > bmp.size[1]:
 bmp = bmp.rotate (90)

ratios = [1.0 * printable_area[0] / bmp.size[0], 1.0 * printable_area[1] /
bmp.size[1]]
scale = min (ratios)

Start the print job, and draw the bitmap to
the printer device at the scaled size.

hDC.StartDoc (file_name)
hDC.StartPage ()

dib = ImageWin.Dib (bmp)
scaled_width, scaled_height = [int (scale * i) for i in bmp.size]
x1 = int ((printer_size[0] - scaled_width) / 2)
y1 = int ((printer_size[1] - scaled_height) / 2)
x2 = x1 + scaled_width
y2 = y1 + scaled_height
dib.draw (hDC.GetHandleOutput (), (x1, y1, x2, y2))

hDC.EndPage ()
hDC.EndDoc ()
hDC.DeleteDC ()

Given the technique (creating a device context) you could use any of the standard Windows
functions on it, such as DrawText, BitBlt &c. eg (example from pywin32 documentation):

import win32ui
import win32print
import win32con

INCH = 1440

hDC = win32ui.CreateDC ()
hDC.CreatePrinterDC (win32print.GetDefaultPrinter ())
hDC.StartDoc ("Test doc")
hDC.StartPage ()
hDC.SetMapMode (win32con.MM_TWIPS)
hDC.DrawText ("TEST", (0, INCH * -1, INCH * 8, INCH * -2), win32con.DT_CENTER)
hDC.EndPage ()
hDC.EndDoc ()

Lots of text: generate a PDF

You could just send text directly to the printer, but you're at the mercy of whatever fonts and
margins and what-have-you the printer has defined. Rather than start emitting raw PCL codes
you can generate PDFs and let Acrobat look after printing. The Reportlab toolkit does this
supremely well, and especially its Platypus document framework, which gives you the ability to
generate pretty much arbitrarily complex documents. The example below hardly scratches the
surface of the toolkit, but shows that you don't need two pages of setup code to generate a
perfectly usable PDF. Once this is generated, you can use the ShellExecute technique outlined

above to print.

from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib.units import inch

import cgi
import tempfile
import win32api

source_file_name = "c:/temp/temp.txt"
pdf_file_name = tempfile.mktemp (".pdf")

styles = getSampleStyleSheet ()
h1 = styles["h1"]
normal = styles["Normal"]

doc = SimpleDocTemplate (pdf_file_name)

reportlab expects to see XML-compliant
data; need to escape ampersands &c.

text = cgi.escape (open (source_file_name).read ()).splitlines ()

Take the first line of the document as a
header; the rest are treated as body text.

story = [Paragraph (text[0], h1)]
for line in text[1:]:
 story.append (Paragraph (line, normal))
 story.append (Spacer (1, 0.2 * inch))

doc.build (story)
w
i
n
3
2
a
p
i
.
S
h
e
l
l
E
x
e
c
u
t
e

(
0
,

"
p
r
i
n
t
"
,

p

